Curse of Dimensionality and k-NN
نویسنده
چکیده
منابع مشابه
Time-Series Classification in Many Intrinsic Dimensions
In the context of many data mining tasks, high dimensionality was shown to be able to pose significant problems, commonly referred to as different aspects of the curse of dimensionality. In this paper, we investigate in the time-series domain one aspect of the dimensionality curse called hubness, which refers to the tendency of some instances in a data set to become hubs by being included in un...
متن کاملInput Space Partitioning for Neural Network Learning
Neural Network (NN) is a supervised machine learning technique, which is typically employed to solve classification problems. When solving a classification problem with the conventional NN, the input data fed into the NN often consists of multiple attributes of various properties. However, training the NN with all of the available input attributes may not lead to the desirable performance consi...
متن کاملPartition based pattern synthesis technique with efficient algorithms for nearest neighbor classification
Nearest neighbor (NN) classifier is the most popular non-parametric classifier. It is a simple classifier with no design phase and shows good performance. Due to the curse of dimensionality effect, the size of training set needed by it to achieve a given classification accuracy becomes prohibitively large when the dimensionality of the data is high. Generating artificial patterns can reduce thi...
متن کاملImproving nearest neighbor classification with cam weighted distance
Nearest neighbor (NN) classification assumes locally constant class conditional probabilities, and suffers from bias in high dimensions with a small sample set. In this paper, we propose a novel cam weighted distance to ameliorate the curse of dimensionality. Different from the existing neighborhood-based methods which only analyze a small space emanating from the query sample, the proposed nea...
متن کاملOverlap pattern synthesis with an efficient nearest neighbor classifier
Nearest neighbor (NN) classifier is the most popular non-parametric classifier. It is a simple classifier with no design phase and shows good performance. Important factors affecting the efficiency and performance of NN classifier are (i) memory required to store the training set, (ii) classification time required to search the nearest neighbor of a given test pattern, and (iii) due to the curs...
متن کامل